Accelerated Deep Learning Advances in HPC

William M. Tang

Princeton University/Princeton Plasma Physics Laboratory (PPPL)

GTC-DC-2017 Invited Talk #DC-7243

Location: Hemisphere A

Washington, DC

November 2, 2017

Background/Approach

- Deep Learning Method: distributed data-parallel approach to train deep neural networks → Python framework using high-level Keras library with Google Tensorflow backend
- -- major contrast with "Shallow Learning" approaches including SVM's, Random Forests, Single Layer Neural Nets, etc. including (i) deployment of accelerators (e.g., modern GPU's); and (ii) move from DL software deployment on clusters to supercomputers:
 - → Titan (ORNL), Summit-Dev (ORNL); Piz Daint (CSCS);
 Tsubame-3 (TiTech) + Intel Systems Cori (LBNL), Theta (ANL)
 - -- stochastic gradient descent (SGD) used for large-scale (i.e., <u>optimization</u> <u>on supercomputers</u>) with parallelization via mini-batch training to reduce communication costs
- <u>DL Supercomputer Challenge</u>: scaling studies to examine if convergence rate saturates with increasing mini-batch size (to thousands of GPU's)

APPLICATION TOPIC: FUSION ENERGY SCIENCE <u>SITUATION ANALYSIS</u>

Most critical problem for Fusion Energy: <u>avoid/mitigate large-scale major disruptions</u>

- •<u>Approach</u>: Use of big-data-driven statistical/machine-learning (ML) predictions for the occurrence of disruptions in EUROFUSION facility "Joint European Torus (JET)"
- •<u>Current Status:</u> ~ 8 years of R&D results (led by JET) using Support Vector Machine (SVM) ML on <u>zero-D</u> time trace data executed on CPU clusters yielding ~ reported success rates in mid-80% range for JET 30 ms before disruptions, BUT > <u>95% with false alarm rate < 3% actually needed for ITER (Reference P. DeVries, et al. (2015)</u>

Princeton Team Goals include:

- (i)improve physics fidelity via development of new <u>ML multi-D</u>, <u>time-dependent</u> <u>software including better classifiers;</u>
- (ii)develop <u>"portable"</u> (cross-machine) predictive software beyond JET to other devices and eventually ITER; and
- (iii)enhance execution speed of disruption analysis for very large datasets
- → <u>development & deployment of advanced ML software via Deep Learning</u>

 Recurrent Neural Networks

CLASSIFICATION

- Binary Classification Problem:
 - Shots are Disruptive or Non-Disruptive
- Supervised ML techniques:
 - Physics domain scientists combine knowledge base of observationally validated information with advanced statistical/ML predictive methods.
- Machine Learning (ML) Methods Engaged:
 - Basic SVM approach initiated by JET team producing "APODIS" software *leading* **now to** *Princeton's New Deep Learning Fusion Recurrent Neural Net (FRNN) code*
- Approach: (i) <u>examine appropriately normalized data;</u> (ii) <u>use training set</u> to generate model; (iii) <u>use trained model to classify new samples</u>
 - → Multi-D data analysis requires <u>new signal representations</u>;
 - → FRNN software includes <u>Deep Learning Convolutional and Recurrent</u> <u>Neural Net features</u>.

Challenges & Opportunities

Last closed magnetic

flux surface

Higher Dimensional Signals

- At each timestep: arrays instead of scalars
- •All as a function of ρ (normalized flux surface)
- •Raw 1D profile → convolution, optimize pooling for most salient features
- •Full feature vectors/arrays include zero-D

plus 1D

- –1D Current profiles
- –1D Electron temperature profiles
- -1D Radiation profiles

Torus axis

Magnetic axis

Machine Learning Workflow

JET Disruption Data

# Shots	Disruptive	Nondisruptive	Totals
Carbon Wall	324	4029	4353
Beryllium Wall (ILW)	185	1036	1221
Totals	509	5065	5574

JET produces ~ Terabyte (TB) of data per day

JET studies → 9 Signals of zero-D (scalar) time traces, including	Data Size (GB)
Plasma Current	1.8
Mode Lock Amplitude	1.8
Plasma Density	7.8
Radiated Power	30.0
Total Input Power	3.0
d/dt Stored Diamagnetic Energy	2.9
Plasma Internal Inductance	3.0

~55 GB data collected from each JET shot

→ Well over 350 TB total
amount with multidimensional data yet to
be analyzed

Deep Recurrent Neural Networks (RNNs): Basic Description

- "Deep"
 - Learn salient representation of complex, <u>higher dimensional</u> data
- "Recurrent"
 - Output h(t) depends on input x(t) & internal state s(t-1)

Internal State ("memory/context")

Image adapted from: colah.github.io

Deep Recurrent Neural Nets: Schematic

FRNN Code PERFORMANCE: ROC CURVES

JET ITER-like Wall Cases @30ms before Disruption

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False Positives (bad: safe shot incorrectly labeled disruptive).

- Data (~50 GB), 0D signals:
 Training: on 4100 shots from JET C-Wall campaigns
 Testing 1200 shots from Jet ILW campaigns
 All shots used, no signal filtering or removal of shots

RNNs: HPC Innovations Engaged

GPU training

- Neural networks use dense tensor manipulations, efficient use of GPU FLOPS
- Over 10x speedup better than multicore node training (CPU's)

Distributed Training via MPI

Linear scaling:

- Key benchmark of "time to accuracy": we can train a model that achieves the same results nearly N times faster with N GPUs
 Scalable
- ◆to 100s or >1000's of GPU's on Leadership Class Facilities
- TB's of data and more
- •Example: Best model training time on full dataset (~40GB, 4500 shots) of 0D signals training
 - SVM (JET) : > 24hrs
 - RNN (20 GPU's) : ~40min

Fusion Recurrent Neural Net (FRNN) Description

- Python deep learning code for disruption prediction in fusion (tokamak) experiments
 - Reference: https://github.com/PPPLDeepLearning/plasma-python
- Implements distributed data parallel synchronous RNN training
 - Tensorflow & Theano backends
 with MPI for communication
 - FRNN code workflow is characteristic of typical distributed deep learning software
 - Core modules:
 - Models: Python classes necessary to construct, train, and optimize deep RNN models.
 - Pre-process: arrange data into patches for stateful training; normalize
 - **Primitives:** Python objects for key plasma physics abstractions
 - **Utils:** a set of auxiliary functions for pre-processing, performance evaluation, and learning curves analysis

Scaling Summary

Communication: each batch of data requires time for synchronization

$$T_{sync} \sim log \left(N_{workers} \right)$$

Runtime: computation time

$$T \sim \frac{1}{N} \left(A + B \log(N) \right) = O\left(\frac{\log(N)}{N} \right)$$

Parallel Efficiency

Parallel Efficiency
$$\sim \frac{A+B}{A+B \log(N)} = o\left(\frac{1}{\log(N)}\right)$$

FRNN Scaling Results on GPU's

- Tests on OLCF Titan CRAY supercomputer
 - OLCF DD AWARD: Enabled Scaling Studies on Titan currently up to 6000 GPU's
 - Total ~ 18.7K Tesla K20X Kepler GPUs

Tensorflow+MPI

CURRENT PERSPECTIVE

Forecasting disruptions using machine learning is an important application of a **general idea**:

- → Use multi outcome prediction to distinguish disruption types/scenarios
- → Beginning now to move from <u>prediction to active control</u> (including new experimental proposals on the U.S. DIII-D tokamak in San Diego, CA)
- → Increasingly large and diverse data sets require building scalable systems to take advantage of leadership class computing facilities

Fusion Deep Learning (FRNN) Technical Summary

- FRNN → a distributed data-parallel approach to train deep neural networks (stacked LSTM's);
- Replica of the model is kept on each "worker" → processing different minibatches of the training dataset in parallel;
- Results on each worker are combined after each epoch using MPI;
- Model parameters are synchronized via parameter averaging → with learning rate adjusted after each epoch to improve convergence
- Stochastic gradient descent (SGD) used for large-scale optimization with parallelization via mini-batch training to reduce communication cost.
- → <u>Challenge</u>: scaling studies to examine if <u>convergence rate saturates/</u> <u>decreases with increasing mini-batch size (to thousands of GPU's).</u>
- → Targeted Large HPC Systems with P-100's for Performance Scaling

 Studies: (1) "TSUBAME 3" @ TITECH with ~ 3K GPU's "Grand

 Challenge Runs"; (2) "PIZ-DAINT" Cray XC50 @ CSCS (Switzerland) with

 > 4K GPU'S; (3) "SUMMIT-DEV" @ OLCF leading to SUMMIT with VOLTA

 GPU's

New FRNN scaling tests: TSUBAME 3.0

Very recent results: TSUBAME 3.0 supercomputer (TiTech, Tokyo, Japan)

Tsubame 3.0 initial "Grand Challenge Runs"

- Order of thousand Tesla P100 SXM2 GPUs, 4 GPUs per node, NVlink
- Tensorflow+MPI, CUDA8, CuDNN 6, OpenMPI 2.1.1, GPU Direct

Fusion Deep Learning (FRNN) Technical Summary (continued)

NVIDIA Volta GPU's → to be key element of 200 PF SUMMIT @ OLCF

Associated Challenge: requires training neural networks with "half-precision floats"

- Single-Precision → 32 bits (8 bits for exponent, 23 for fraction and 1 for sign)
- Double-Precision → 64 bits

NOTE: FRNN code has produced many results with single precision - float32 and has now developed new half-precision float - 5 bits exponent, 10 bit fraction and 1 bit sign

REFERENCE: half-precision float deployment of FRNN with cross-benchmarking of new results vs. earlier single precision results → paper to be presented at SC'17 (Denver, CO)— includes description of changes in the weight update during SGD (Stochastic Gradient Descent) method to prevent vanishing gradients due to lower precision.

 <u>Looking forward to testing new half-precision FRNN software capability on</u> NVIDIA Volta GPU's at OLCF

Fusion Deep Learning (FRNN) Technical Summary (continued)

→ GOOGLE Article on Tensor Processing Units in Cloud:

"Build and Train Machine Learning Models on our new Google Cloud TPU's" (Tensor Processing Units)

https://blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/

The highlighted description highlights <u>potential delivery of 11.5 PF of compute power to expedite training!</u>

Possible FRNN Software Relevance:

Since FRNN software already uses the TensorFlow backend, our current plan is to try the <u>Google Cloud TPU's</u> -- beginning with their offer of <u>free access to 1000 Cloud TPU's via the TensorFlow Research Cloud</u> – for which we have applied.

→ APPROACH: Comparison of time to prediction and associated deep learning neural nets training rates on supercomputers vs. that on the new Google Cloud TPU's promises to be quite informative.

Fusion Big Data ML/DL Application Summary

• Fusion Energy Mission:

- -- Accelerate demonstration of the scientific & technical feasibility of delivering Fusion Power
- -- Most critical associated problem is to avoid/mitigate large-scale major disruptions.

• ML Relevance to HPC:

- -- Rapid Advances on development of predictive methods via large-data-driven "machine-learning" statistical methods
- -- Approach Focus: Deep Learning/Recurrent Neural Nets (RNNs)
- -- <u>Significance:</u> Exciting alternative predictive approach to "hypothesis-driven/first principles" exascale predictive methods

*** Convergence/Complementarity: Physics-centric path-to-exascale HPC needed to introduce/establish improved Supervised ML Classifiers with associated features

Associated Challenge:

→ Improvements over zero-D SVM-based machine-learning needed to achieve > 95% success rate, <5% false positives at least 30 ms before disruptions -- with portability of software to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time enabled by access to advanced HPC hardware (e.g., large GPU and possibly other supercomputing systems).

Takeaways: Deep Learning Analysis

Use Higher-dimensional signals

Automatically learn cross-machine, generalizable features

Take advantage of world class HPC

Go from prediction to control (deep reinforcement learning)

